如图,正方形ABCD的边长为4,M、N分别是边BC、CD上的两个动点,当点M在BC边上运动(不与B 、C 重合)时,(1)当点M运动到什么位置时,△ABM相似 △AMN,求的值.(2)设梯形ABCN的面积为Y,求Y与X之间的函数解析式; 并求当点M运动到什么位置时,四边形ABCN的面积最大,最大面积是多少?

问题描述:

如图,正方形ABCD的边长为4,M、N分别是边BC、CD上的两个动点,当点M在BC边上运动(不与B 、C 重合)时,
(1)当点M运动到什么位置时,△ABM相似 △AMN,求的值.
(2)设梯形ABCN的面积为Y,求Y与X之间的函数解析式; 并求当点M运动到什么位置时,四边形ABCN的面积最大,最大面积是多少?

①∵AM⊥MN,∴∠AMB+∠CMN=90°在△AMB中,∠AMB+∠MAB=90°∴∠MAB=∠NMC,又∠ABM=∠MCN=90°∴△ABM∽△MCN②△ABM∽△MCN∴BM/CN=AB/MCBC=AB=4,BM=x,MC=BC-BM=4-x∴x/CN=4/(4-x)∴CN=x(4-x)/4∴梯形ABCN面积y=(AB+...