答
(1)作AC⊥x轴,垂足为C,作BD⊥x轴垂足为D.
则∠ACO=∠ODB=90°,
∴∠AOC+∠OAC=90°.
又∵∠AOB=90°,
∴∠AOC+∠BOD=90°
∴∠OAC=∠BOD.
在△ACO和△ODB中,
|
∠ACO=∠ODB |
∠OAC=∠BOD |
AO=BO |
|
|
∴△ACO≌△ODB(AAS).
∴OD=AC=1,DB=OC=3.
∴点B的坐标为(1,3).
(2)因抛物线过原点,
故可设所求抛物线的解析式为y=ax2+bx.
将A(-3,1),B(1,3)两点代入,
得,
解得:a=,b=
故所求抛物线的解析式为y=x2+x.
(3)在抛物线y=x2+x中,对称轴l的方程是x=-=-
点B1是B关于抛物线的对称轴l的对称点,
故B1坐标(-,3)
在△AB1B中,底边B1B=,高的长为2.
故S△AB1B=××2=.
答案解析:(1)如果过A作AC⊥x轴,垂足为C,作BD⊥x轴垂足为D.不难得出△AOC和△BOD全等,那么B的横坐标就是A点纵坐标的绝对值,B的纵坐标就是A点的横坐标的绝对值,由此可得出B的坐标.
(2)已知了A,O的坐标,根据(1)求出的B点的坐标,可用待定系数法求出抛物线的解析式.
(3)根据(2)的解析式可得出对称轴的解析式,然后根据B点的坐标得出B1的坐标,那么BB1就是三角形的底边,B的纵坐标与A的纵坐标的差的绝对值就是△ABB1的高,由此可求出其面积.
考试点:二次函数综合题.
知识点:本题主要考查了全等三角形的判定以及用待定系数法求二次函数解析式,二次函数的性质等知识点.