f(x)是定义在R上的以3为周期的偶函数,且f(2)=0.则方程f(x)=0在区间(0,6)内解的个数的最小值是(  )A. 5B. 4C. 3D. 2

问题描述:

f(x)是定义在R上的以3为周期的偶函数,且f(2)=0.则方程f(x)=0在区间(0,6)内解的个数的最小值是(  )
A. 5
B. 4
C. 3
D. 2

∵f(x)是定义在R上的偶函数,且周期是3,f(2)=0,∴f(-2)=0,
∴f(5)=f(2)=0,f(1)=f(-2)=0,f(4)=f(1)=0.
即在区间(0,6)内,
f(2)=0,f(5)=0,f(1)=0,f(4)=0,
故答案:B
答案解析:根据题意,由f(x)是定义在R上的以3为周期的偶函数,且f(2)=0,可得f(-2)=0,重复利用函数的周期性,看在区间(0,6)内,还能推出哪些数的函数值等于0.
考试点:根的存在性及根的个数判断;函数的周期性.
知识点:本题考查函数的奇偶性、根的存在性及个数判断.