y=4/2+根号x的值域y=(x²-x)/(x²-x+1)值域求大神来解,

问题描述:

y=4/2+根号x的值域
y=(x²-x)/(x²-x+1)值域求大神来解,

化简可得:
y=(x*x-x+1-1)/(x*x-x+1)=1-1/(x*x-x+1)
也就是说只要计算出x*x-x+1的取值范围即可
而x*x-x+1=(x-0.5)*(x-0.5)+0.75>=0.75
所以0>-1/(x*x-x+1)>=-4/3
所以1>y>=-1/3