如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,则四边形DHFC的面积为( )A. 3B. 33C. 9D. 63
问题描述:
如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,则四边形DHFC的面积为( )
A.
3
B. 3
3
C. 9
D. 6
3
答
连结CH,如图,
∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,
∴∠BCF=30°,
∴∠FCD=60°,
∵在Rt△CFH和Rt△CDH中
,
CH=CH CF=CD
∴Rt△CFH≌Rt△CDH(HL),
∴∠FCH=∠DCH,
∴∠FCH=30°,
在Rt△CFH中,CF=3,∠FCH=30°,
∴HF=
=FC
3
,
3
∴S△FCH=
×3×1 2
=
3
,3
3
2
∴四边形DHFC的面积=2S△FCH=3
.
3
故选B.
答案解析:连结CH,根据旋转的性质得∠BCF=30°,则∠FCD=60°,根据“HL”可判断Rt△CFH≌Rt△CDH,则∠FCH=∠DCH=30°,在Rt△CFH中,根据含30度的直角三角形三边的关系得到HF=
=FC
3
,然后根据三角形面积公式计算出S△FCH=
3
,最后利用四边形DHFC的面积=2S△FCH即可.3
3
2
考试点:旋转的性质;正方形的性质.
知识点:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形的性质.