已知圆台的上下底面半径分别是2,5,且侧面面积等于两底面面积之和,求该圆台的母线长及体积关键在体积
问题描述:
已知圆台的上下底面半径分别是2,5,且侧面面积等于两底面面积之和,求该圆台的母线长及体积
关键在体积
答
母线l=√[(R-r)² +h² ] 侧面积As=πl(R+r)=上下底面积=π(R²+r²)=πl(R+r), (R²+r²)=l(R+r), (5²+2²)=(5+2)√(R-r)² +h² ,25+4=7√(5-2)²+h², 29=7√(3²+h²), (4.143)²=9+h²
17.163-9=h² h²= 8.163 h=2.86
所以 母线l=√[(5-2)²+(8.163)]=√(17.163)=4.143
体积V=πh(R²+Rr+r²)/3=3.14x2.86(25+10+4)/3=116.80
请看作图结果: