如图,在四边形ABCD中,AD<BC,对角线AC、BD相交于O点,AC=BD,∠ACB=∠DBC.(1)求证:四边形ABCD为等腰梯形.(2)若E为AB上一点,延长DC至F,使CF=BE,连接EF交BC于G,请判断G点是否为EF中点,并说明理由.

问题描述:

如图,在四边形ABCD中,AD<BC,对角线AC、BD相交于O点,AC=BD,∠ACB=∠DBC.

(1)求证:四边形ABCD为等腰梯形.
(2)若E为AB上一点,延长DC至F,使CF=BE,连接EF交BC于G,请判断G点是否为EF中点,并说明理由.

(1)证明:∵∠ACB=∠DBC,
∴OB=OC,
∵AC=BD,
∴OA=OD,
∴∠OAD=∠ODA,
∵∠DOC=∠OAD+∠ODA=∠OBC+∠OCB,
∴2∠OAD=2∠OCB,
∴∠OAD=∠OCB,
∴AD∥BC
∵AD<BC,
∴四边形ABCD为梯形.(2分)
在△ABC和△DCB中:AC=BD,∠ACB=∠DBC,CB=BC.
∴△ABC≌△DCB,
∴AB=CD,(3分)
∴四边形ABCD为等腰梯形.(4分)
(2)点G是EF中点.理由:
过E作EH∥CD交BC于H.
∴∠EHB=∠DCB,∠EHG=∠GCF,
∵梯形ABCD为等腰梯形,
∴∠EBH=∠DCB,
∴∠EBH=∠EHB,
∴EB=EH,(7分)
∵EB=CF,
∴EH=CF,
在△EHG和△FGC中:∠EHG=∠FCG,∠EGH=∠FGC,EH=CF,
∴△EHG≌△FGC,(8分)
∴EG=FG即G为EF中点.(9分)
注(2)问也可过F作FM∥AB交BC延长线于M,证△BEG≌△FMG也可.
答案解析:(1)根据等角对等边可证明OB=OC,还可得出∠OAD=∠OCB,则AD∥BC,从而得出四边形ABCD为等腰梯形.
(2)过E作EH∥CD交BC于H.由梯形ABCD为等腰梯形,得∠EBH=∠DCB,则EB=EH,所以△EHG≌△FGC,即EG=FG(G为EF中点).
考试点:等腰梯形的判定;全等三角形的判定与性质.


知识点:本题考查了等腰梯形的判定以及全等三角形的判定和性质,是一道综合题,难度较大.