错位相减法求和:求和:Sn=1+3x+5x2+7x3+…+(2n-1)xn-1.
问题描述:
错位相减法求和:求和:Sn=1+3x+5x2+7x3+…+(2n-1)xn-1.
答
由题可知,{(2n-1)xn-1}的通项是等差数列{2n-1}的通项与等比数列{xn-1}的通项之积.
∵Sn=1+3x+5x2+7x3+…+(2n-1)xn-1,
∴xSn=x+3x2+…+(2n−3)xn−1+(2n-1)xn,
两式相减得(1-x)Sn=1+2x+2x2+…+2xn-1-(2n-1)xn,
①当x≠1,0时,由等比数列的求和公式得:(1-x)Sn=-1+
-(2n-1)xn,2(1−xn) 1−x
∴Sn=
;(2n−1)xn+1−(2n+1)xn+(1+x) (1−x)2
②当x=1时,Sn=1+3+5+…+(2n-1)=
=n2.n(1+2n−1) 2
③当x=0时,Sn=1+0=1.
答案解析:对x分类讨论,利用“错位相减法”和等差数列的前n项和公式、等比数列的前n项和公式即可得出.
考试点:数列的求和.
知识点:熟练掌握分类讨论思想、“错位相减法”、等差数列的前n项和公式、等比数列的前n项和公式是解题的关键.