如图,已知△AOB中,∠AOB=90°,OD⊥AB于点D.以点O为圆心,OD为半径的圆交OA于点E,在BA上截取BC=OB,求证:CE是⊙O的切线.

问题描述:

如图,已知△AOB中,∠AOB=90°,OD⊥AB于点D.以点O为圆心,OD为半径的圆交OA于点E,在BA上截取BC=OB,求证:CE是⊙O的切线.

证明:连接CO,
∵BC=OB,
∴∠1=∠2,
∵∠AOB=90°,
∴∠2+∠4=90°,
∵OD⊥AB,
∴∠1+∠3=90°,
∴∠3=∠4,
在△CEO和△CDO中

EO=DO
∠3=∠4
CO=CO

∴△CEO≌△CDO(SAS),
∴∠CEO=∠CDO=90°,
∴CE是⊙O的切线.
答案解析:连接CO,然后根据余角的性质证明∠3=∠4,再证明△CEO≌△CDO可得∠CEO=∠CDO=90°,进而得到CE是⊙O的切线.
考试点:切线的判定.

知识点:此题主要考查了切线的判定,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.