已知cos a= -√(2)/3,a属于(π/2,π),求2/sin2a - cosa/sina的值
问题描述:
已知cos a= -√(2)/3,a属于(π/2,π),求2/sin2a - cosa/sina的值
答
结果是 -根号下14/2
先算sina=-根号下7/3 (a的范围)
把所求的通分,sin2a=2sinacosa
带入值就行了
答
由已知条件知道,
sin²a=1-cos²a
=1-2/9
=7/9,
则有sina=±(√7)/3,
又a∈(π/2,π),在这个范围内sina>0
所以有:sina=(√7)/3
2/sin2a - cosa/sina
=2/(2sina·cosa)-cosa/sina
=1/(sina·cosa)-cosa/sina
=-(cos²-1)/(cosa·sina)
=-(2/9-1)/(-×××)
=(√14)/2
答
∵a属于(π/2,π)
∴sina>0
∵cosa= -√(2)/3
∴sina=√7/3
故 2/sin2a-cosa/sina
=1/(sinacosa)-cosa/sina
=(1-cos²a)/(sinacosa)
=sina/cosa
=(√7/3)/(-√(2)/3)
=-√14/2.
答
2/sin2a - cosa/sina
=2/2sinacosa-cosa/sina
=(1-(cosa)^2)/sinacosa
=(sina)^2/sinacosa
=tana=-(根号14)/2