已知:关于x的一元二次方程mx2-3(m-1)x+2m-3=0(m为实数)(1)若方程有两个不相等的实数根,求m的取值范围;(2)求证:无论m为何值,方程总有一个固定的根;(3)若m为整数,且方程的两个根均为正整数,求m的值及方程所有的根.
问题描述:
已知:关于x的一元二次方程mx2-3(m-1)x+2m-3=0(m为实数)
(1)若方程有两个不相等的实数根,求m的取值范围;
(2)求证:无论m为何值,方程总有一个固定的根;
(3)若m为整数,且方程的两个根均为正整数,求m的值及方程所有的根.
答
知识点:本题考查的是根与系数的关系、用公式法解一元二次方程,熟知以上知识是解答此题的关键.
(1)∵△=b2-4ac=[-3(m-1)]2-4m(2m-3)=(m-3)2,∵方程有两个不相等的实数根,∴(m-3)2>0且 m≠0,∴m≠3且 m≠0,∴m的取值范围是m≠3且 m≠0;(2)证明:由求根公式x=−b±b2−4ac2a=3...
答案解析:(1)先根据方程有两个不相等的实数根得出关于m的不等式,求出m的取值范围即可;
(2)由公式法得出方程的两个实数根即可作出判断;
(3)根据m为整数,且方程的两个根均为正整数,可知(2)中所求两根均为整数,得出符合条件的m的值即可.
考试点:根的判别式;解一元二次方程-公式法;根与系数的关系.
知识点:本题考查的是根与系数的关系、用公式法解一元二次方程,熟知以上知识是解答此题的关键.