已知:关于x的一元二次方程(m-1)x2+(m-2)x-1=0(m为实数) (1)若方程有两个不相等的实数根,求m的取值范围; (2)在(1)的条件下,求证:无论m取何值,抛物线y=(m-1)x2+(m-2)x-1总

问题描述:

已知:关于x的一元二次方程(m-1)x2+(m-2)x-1=0(m为实数)
(1)若方程有两个不相等的实数根,求m的取值范围;
(2)在(1)的条件下,求证:无论m取何值,抛物线y=(m-1)x2+(m-2)x-1总过x轴上的一个固定点;
(3)关于x的一元二次方程(m-1)x2+(m-2)x-1=0有两个不相等的整数根,把抛物线y=(m-1)x2+(m-2)x-1向右平移3个单位长度,求平移后的解析式.

(1)根据题意,得△=(m-2)2-4×(m-1)×(-1)>0,即m2>0解得,m>0或m<0        ①又∵m-1≠0,∴m≠1          &n...