圆X^2+Y^2+X-6y=0上两点P,Q满足1.关于直线KX-Y+4=0对称.2OP垂直 OQ.求直线PQ的方程

问题描述:

圆X^2+Y^2+X-6y=0上两点P,Q满足1.关于直线KX-Y+4=0对称.2OP垂直 OQ.求直线PQ的方程

解.x²+y²+x-6y=(x+0.5)²+(y-3)²-9.25=0
∴该圆的圆心为(-0.5,3)
∵圆上的两点P、Q关于直线Kx-y+4=0对称
∴圆心必在此直线上,即有
-0.5K-3+4=0→K=2
∵PQ⊥直线Kx-y+4=0
∴直线PQ的斜率为-1/2
设PQ直接方程为x+2y+b=0
∵x²+y²+x-6y=0过O、P、Q,OP垂直于OQ
∴PQ为圆的直径,PQ直线过圆点,有
-0.5+6+b=0→b=-5.5
∴PQ直接方程为2x+4y-11=0