已知;a+b+c=0,求a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)+3的值

问题描述:

已知;a+b+c=0,求a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)+3的值

等于0

原式=a/b+a/c+b/c+b/a+c/a+c/b+3=(a+c)/b+(a+b)/c+(b+c)/a+3=(-b)/b+(-c)/c+(-a)/a+3=0.

∵a+b+c=0
∴a+b=-c,a+c=-b,b+c=-a
∴原式=-a²/bc-b²/ac-c²/ab+3
=-(a³+b³+c³-3abc)/abc
=-[(a+b)³+c³-3a²b-3ab²-3abc]/abc
=-[(a+b+c)(a²+b²+2ab-ac-bc+c²-3ab(a+b+c)]/abc
=-(a+b+c)(a²+b²+2ab-ac-bc+c²-3ab)/abc
=0.