函数y=(x^2-x+1)^x的导数

问题描述:

函数y=(x^2-x+1)^x的导数

函数y=(x²-x+1)^x的导数
两边取对数:lny=xln(x²-x+1)
两边对x取导数:y′/y=ln(x²-x+1)+x(2x-1)/(x²-x+1)
故y′=y[ln(x²-x+1)+(2x²-x)/(x²-x+1)]=[(x²-x+1)^x][ln(x²-x+1)+(2x²-x)/(x²-x+1)]