已知数列(an)的前n项何为Sn=1/4n²+2/3n+3,求这个数列的通项公式
问题描述:
已知数列(an)的前n项何为Sn=1/4n²+2/3n+3,求这个数列的通项公式
答
an=Sn-Sn-1=1/4n2+2/3n+3-1/4(n-1)2-2/3(n-1)-3
a1=s1=1/4+2/3+3
答
Sn=1/4n²+2/3n+3
Sn=(1/4)(n-1)²+(2/3)(n-1)+3
所以an=Sn-S(n-1)
=(1/4)(2n-1)+2/3
=(n/2)+5/12
答
a1=S1=1/4+2/3+3=47/12当n>=2时,an=Sn-S(n-1)=(1/4n²+2/3n+3)-[1/4(n-1)²+2/3(n-1)+3]=1/4n²+2/3n+3-(1/4n²-1/2n+1/4+2/3n-2/3+3)=1/2n-1/4+2/3=1/2n+5/12
答
Sn=1/4n²+2/3n+3
S(n-1)=1/4(n-1)²+2/3(n-1)+3
an=Sn-S(n-1)
=[1/4n²+2/3n+3] -[1/4(n-1)²+2/3(n-1)+3]
=1/4(2n-1)+2/3
=1/2n-1/4+2/3
=1/2n+5/12
= (6n+5) /12