设函数f(x)在x=0处连续,在(0,c)(c>0)内可导,且limf(x)'=A,x趋向于0,证明:f+(0)'存在,且f+(0)'=A
问题描述:
设函数f(x)在x=0处连续,在(0,c)(c>0)内可导,且limf(x)'=A,x趋向于0,证明:f+(0)'存在,且f+(0)'=A
答
任给 小e > 0,
因为 lim(x-->0)f'(x)=A,存在 a > 0,使得 当 0