|x-y+5|+(3x+y-1)的平方=0怎样解..?

问题描述:

|x-y+5|+(3x+y-1)的平方=0怎样解..?

x-y+5=0①
3x+y-1=0②
①+②得4x+4=0 x=-1
把x=-1代入①得-1-y+5=0 y=4
∴x=-1 y=4

意思就是 x-y+5 3x+y-1都等于零

|x-y+5|>=0 (3x+y-1)^2>=0
|x-y+5|+(3x+y-1)^2>=0
|x-y+5|=0 (3x+y-1)^2=0
x-y+5=0 3x+y-1=0
x=-1 y=4