求(3n-sin(n^2))/(2n+cos(n^2))的极限,当n趋于无限大时
问题描述:
求(3n-sin(n^2))/(2n+cos(n^2))的极限,当n趋于无限大时
答
(3n-1)/(2n+1) ≤(3n-sin(n^2))/(2n+cos(n^2))≤ (3n +1)/(2n-1)lim(n->∞)(3n-1)/(2n+1) ≤lim(n->∞)(3n-sin(n^2))/(2n+cos(n^2))≤ lim(n->∞)(3n +1)/(2n-1)3/2≤lim(n->∞)(3n-sin(n^2))/(2n+cos(n^2))≤3/2=> ...