已知函数f(x)=13x3+12ax2+2bx(a,b∈R),且函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则a2+b2+6a+9的取值范围是______.

问题描述:

已知函数f(x)=

1
3
x3+
1
2
ax2+2bx(a,b∈R),且函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则
a2+b2+6a+9
的取值范围是______.

f′(x)=x2+ax+2b,由题意,

2b>0
1+a+2b<0
4+2a+2b>0

a2+b2+6a+9
的几何意义是点(a,b)与(-3,0),
利用点(a,b)所确定的区域可求得其取值范围是(
2
2
,2)

故答案为(
2
2
,2)

答案解析:三次函数导函数是二次函数,开口向上,一根在区间(0,1)内,另一根在区间(1,2)内,利用导函数可建立关于a,b的不等式,利用线性规划的知识可以求出取值范围.
考试点:函数在某点取得极值的条件;两点间距离公式的应用.
知识点:利用函数在区间内取极值转化为导数为0的根在所在区间内是解题的关键,同时正确得出可行域,利用目标函数的几何意义解题是处理这道问题的技巧所在.