若(x2+px+q)(x2-2x-3)展开后不含x2,x3项,求p、q的值.

问题描述:

若(x2+px+q)(x2-2x-3)展开后不含x2,x3项,求p、q的值.

∵(x2+px+q)(x2-2x-3),
=x4-2x3-3x2+px3-2px2-3px+qx2-2qx-3q,
=x4+(p-2)x3-(2p-q+3)x2-(3p+2q)x-3q,
而题意要求展开后不含x2,x3
∴p-2=0,2p-q+3=0
解得p=2,q=7.
答案解析:先把(x2+px+q)(x2-2x-3)展开,合并同类项,再使x2,x3项得系数为0即可.
考试点:多项式乘多项式.
知识点:本题主要考查多项式乘以多项式的法则,根据不含某一项,就是让这一项的系数等于0列式是解题的关键.