如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于______.

问题描述:

如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于______.

如图,延长FM到N,使MN=MF,连接BN,延长MF交BA延长线于E,
∵M是BC中点,∴BM=CM,∠BMN=∠CMF,
∴△BMN≌△CMF,∴BN=CF,∠N=∠MFC,
又∵∠BAD=∠CAD,MF∥AD,
∴∠E=∠BAD=∠CAD=∠CFM=∠AFE=∠N,
∴AE=AF,BN=BE,
∴AB+AC=AB+AF+FC=AB+AE+FC=BE+FC=BN+FC=2FC,
∴FC=

1
2
(AB+AC)=5.5.
故答案为5.5.
答案解析:可通过作辅助线,即延长FM到N,使MN=MF,连接BN,延长MF交BA延长线于E,从而利用角之间的关系转化为线段之间的关系,进而最终可得出结论.
考试点:全等三角形的判定与性质.
知识点:本题主要考查了全等三角形的判定及性质以及角、线段之间的转化问题,能够熟练掌握.