因式分解:(x²+x)²-26(x²+x)²+120

问题描述:

因式分解:(x²+x)²-26(x²+x)²+120

(x²+x)²-26(x²+x)+120
=(x²+x-20)(x²+x-6)
=(x-2)(x+3)(x-4)(x+5)

zxc

原式=(x²+x-20)(x²+x-6)
=(x+3)(x-2)(x+5)(x-4)

原式=(x²+x-20)(x²+x-6)
=(x+5)(x-4)(x+3)(x-2)

设t = x² + x
那么原式
=t² - 26t + 120 【你确定这里有一个平方?】
=(t - 20)(t - 6)
=(x² + x - 20)(x² + x - 6)
=(x - 4)(x + 5)(x - 2)(x + 3)