对于数列{Xn},若X(2k-1)的极限=a,且 X(2k)的极限为a,a为常数,证明Xn的极限是a.2k-1 和 2k 都是数列的下标,也就是这个数列的奇数列的极限是a,偶数列的极限是a,证明原数列的极限是a.

问题描述:

对于数列{Xn},若X(2k-1)的极限=a,且 X(2k)的极限为a,a为常数,证明Xn的极限是a.
2k-1 和 2k 都是数列的下标,也就是这个数列的奇数列的极限是a,偶数列的极限是a,证明原数列的极限是a.

用极限的定义证明:
对任意ε>0,存在K1∈N使得k>K1时总有│x(2k-1)-a│<ε
对任意ε>0,存在K2∈N使得k>K2时总有│x(2k)-a│<ε
取N=max{2K1-,2K2},于是对任意ε>0,存在自然数N使得n>N时总有
│x(n)-a│<ε
于是Xn的极限是a