设x1>0 x(n+1)=(a+xn)/(1+xn) n=1,2.讨论数列{xn}的收敛性 并在收敛时求其极限 其中a为实数
问题描述:
设x1>0 x(n+1)=(a+xn)/(1+xn) n=1,2.讨论数列{xn}的收敛性 并在收敛时求其极限 其中a为实数
答
x(n+1)=(a+xn)/(1+xn) =(a/xn + 1)(1/xn + 1) 当xn→正无穷 时,a/xn=0 ,1/xn=0
所以x(n+1)= 1/1=1
所以数列{xn} 收敛,极限为 1