高数数列极限题对于数列{Xn},若X(2k-1)的极限=a,且 X(2k)的极限为a,a为常数,证明Xn的极限是a.用极限的定义证明:对任意ε>0,存在K1∈N使得k>K1时总有│x(2k-1)-a│<ε对任意ε>0,存在K2∈N使得k>K2时总有│x(2k)-a│<ε取N=max{2K1-,2K2},于是对任意ε>0,存在自然数N使得n>N时总有│x(n)-a│<ε于是Xn的极限是a我不是很明白取N=max{2K-1,2K2}?第三步很模糊,看不懂?我不是很明白为什么取N=max{2K-1,2K2}?第三步很模糊,看不懂?

问题描述:

高数数列极限题
对于数列{Xn},若X(2k-1)的极限=a,且 X(2k)的极限为a,a为常数,证明Xn的极限是a.
用极限的定义证明:
对任意ε>0,存在K1∈N使得k>K1时总有│x(2k-1)-a│<ε
对任意ε>0,存在K2∈N使得k>K2时总有│x(2k)-a│<ε
取N=max{2K1-,2K2},于是对任意ε>0,存在自然数N使得n>N时总有
│x(n)-a│<ε
于是Xn的极限是a
我不是很明白取N=max{2K-1,2K2}?第三步很模糊,看不懂?
我不是很明白为什么取N=max{2K-1,2K2}?第三步很模糊,看不懂?