已知a=4322×1233,b=4321×1234;下列结论正确的是( )A. a<bB. a=bC. a>b
问题描述:
已知a=4322×1233,b=4321×1234;下列结论正确的是( )
A. a<b
B. a=b
C. a>b
答
a=4322×1233
=(4321+1)×1233
=4321×1233+1233
b=4321×1234
=4321×(1233+1)
=4321×1233+4321
4321×1233+1233<4321×1233+4321,
故选:A.
答案解析:分别把4322变成(4321+1),1234变成(1233+1),再根据乘法分配律,进行运算,据此解答.
考试点:乘除法中的巧算.
知识点:本题考查了学生灵活运用乘法分配律的能力.