三角形ABC中,如果(a+b-c)(sinA+sinB+sinC)=3asinB,则角C=?

问题描述:

三角形ABC中,如果(a+b-c)(sinA+sinB+sinC)=3asinB,则角C=?

由正弦定理知a/sinA=b/sinB=c/sinC,于是有
(a+b-c)(sinA+sinB+sinC)=3asinB
(a+b-c)(a+b+c)=3ab,
a^2+b^+2ab-c^2=3ab
c^=a^2+b^2-ab,而有余弦定理知,c^2=a^2+b^2-2abcosC,所以有cosC=1/2,于是得到C=60.