如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.
问题描述:
如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.
答
证明:PM=HN.理由:∵在△MNP中,H是高MQ与NE的交点,∴∠MEH=∠NQH=90°,∠MQP=∠NQH=90°∵∠MHE=∠NHQ(对顶角相等),∴∠EMH=∠QNH(等角的余角相等)在△MPQ和△NHQ中,∠MQP=∠MQHQM=QN∠PMQ=∠HNQ,∴...
答案解析:首先根据等角的余角相等,得出∠EMH=∠QNH,再利用ASA定理证明△MPQ≌△NHQ,从而得出MP=NH.
考试点:三角形内角和定理;全等三角形的判定与性质.
知识点:解答本题的关键是根据ASA判定△MPQ≌△NHQ.