已知x,y,z∈R,且x+y+z=1,x2+y2+z2=3,则xyz的最大值是______.

问题描述:

已知x,y,z∈R,且x+y+z=1,x2+y2+z2=3,则xyz的最大值是______.

∵x+y+z=1①,x2+y2+z2=3②∴①2-②可得:xy+yz+xz=-1∴xy+z(x+y)=-1∵x+y+z=1,∴x+y=1-z∴xy=-1-z(x+y)=-1-z(1-z)=z2-z-1∵x2+y2=3-z2≥2xy=2(z2-z-1)⇒3z2-2z-5≤0⇒-1≤z≤53令f(z)=xyz=z3-z2-z,则f...
答案解析:由条件可得xy+yz+xz=-1,利用x+y+z=1,可得xyz=z3-z2-z,利用导数的方法,可求xyz的最大值.
考试点:平均值不等式在函数极值中的应用.
知识点:本题考查最值问题,考查导数知识的运用,解题的关键是正确转化,从而利用导数进行求解.