f(x)=4x/(4x+2),求f(1/2001)+f(2/2001)+...+f(2000/2001)
问题描述:
f(x)=4x/(4x+2),求f(1/2001)+f(2/2001)+...+f(2000/2001)
f(x)=4x/(4x+2) (注:x都是4的上标!即:4的x次方/(4的x次方+2) ),求f(1/2001)+f(2/2001)+...+f(2000/2001)
答
f(x)+f(1-x)=4^x/(4^x+2)+4^(1-x)/(4^(1-x)+2)
=[8+2(4^(x)+4^(1-x))]/[8+2(4^(x)+4^(1-x))]
=1(整理清楚- -慢慢看)
故
S=[f(1/2002)+f(2001/2002)]+[f(2/2002)+f(2000/2002)]…+f(1001/2002)
=1+1……+1+f(1/2)
f(1/2)=2/2+2=1/2
∴S=1000+1/2=2001/2