已知函数fx=|sinx|+|cosx|-sin2x-1(1)求函数fx的最值

问题描述:

已知函数fx=|sinx|+|cosx|-sin2x-1(1)求函数fx的最值
(2)如果函数fx在(0.mx)上恰有2014个零点,求m的取值范围

(1)
|sinx|+|cosx|=√[1+2|sinxcosx|]=√[1+|sin2x|]
记a=sin2x
则f(x)=√(1+|a|)-a-1
当a=0时,记t=√(1+a),f(x)=t-t^²=1/4-(t-1/2)²,因为1=