已知dy/dx=2xy^2求其通解
问题描述:
已知dy/dx=2xy^2求其通解
求∫dx/y^2
答
dy/dx = 2xy^2
==> dy/y^2 = 2x dx
==> ∫ dy/y^2 = ∫ 2x dx
==> -1/y = x^2 + C
==> 1/y^2 = x^4 + 2C*x^2 + C^2
==> ∫ dx/y^2 = ∫ (x^4 + 2C*x^2 + C^2) dx
==> ∫ dx/y^2 = x^5 / 5 + 2C*x^3 / 3 + C^2 * x + D
C、D为任意常数