f(x)=ax^3-2ax^2+b (a>0)在区间【-2,1】上最大值是5,最小值是-11 求f(x)的解析式

问题描述:

f(x)=ax^3-2ax^2+b (a>0)在区间【-2,1】上最大值是5,最小值是-11 求f(x)的解析式

f(x)=ax^3-2ax^2+b (a>0)f'(x) = 3ax^2-4ax = 3ax(x-4/3)x∈【-2,0)时,f'(x) >0,f(x)单调增;x∈(0,1)时,f'(x) <0,f(x)单调减x=0时,有最大值f(0) = 0-0+b = 5,b=5f(x)=ax^3-2ax^2+5f(-2) = -8a-8a+5 = -16a+5f(1...为什么不能得出(0,1)是递减,x=1 f(1)= a-2a+5 = -a+5=-11a=16还要假设最小值f(-2) = -16a+5 = -11,a=1在区间【-2,1】:x∈【-2,0)时,单调增;x∈(0,1)时单调减。∴最小值可能是f(-2),也可能是f(1)f(-2)-f(1) = -16a+5-(-a+5) = -15a<0∴最小值为f(-2)∴a=1∴f(x)=x^3-2x^2+5