已知X1+x2+X2+...+Xn=1,证明不等式:X1^2/(X1+X2)+X2^2/(X2+X3)+X3^2/(X3+X4)+.+Xn^2/(Xn+X1)>=1/2

问题描述:

已知X1+x2+X2+...+Xn=1,证明不等式:X1^2/(X1+X2)+X2^2/(X2+X3)+X3^2/(X3+X4)+.+Xn^2/(Xn+X1)>=1/2

是否应加个条件:X1、X2、X3、...、Xn是正数.证法一:均值不等式.X1^2/(X1+X2)+(X1+X2)/4≥2根号[X1^2/(X1+X2)×(X1+X2)/4]=X1X2^2/(X2+X3)+(X2+X3)/4≥2根号[X2^2/(X2+X3)×(X2+X3)/4]=X2……Xn^2/...