是否存在某个实数m,使得方程x2+mx+2=0和x2+2x+m=0有且只有一个公共的实根?如果存在,求出这个实数m及两方程的公共实根;如果不存在,请说明理由.
问题描述:
是否存在某个实数m,使得方程x2+mx+2=0和x2+2x+m=0有且只有一个公共的实根?如果存在,求出这个实数m及两方程的公共实根;如果不存在,请说明理由.
答
假设存在符合条件的实数m,且设这两个方程的公共实数根为a,则a2+ma+2=0 ①a2+2a+m=0 ②①-②,得a(m-2)+(2-m)=0(m-2)(a-1)=0∴m=2 或a...