极限lim(1+k/x)=e^(1/2),(k为常数,x无穷大),求k

问题描述:

极限lim(1+k/x)=e^(1/2),(k为常数,x无穷大),求k
应该是:
极限lim(1+k/x)^x=e^(1/2),(k为常数,x无穷大),求k?
否则左边=0不可能等于右边!
lim(1+k/x)^x=lim[(1+k/x)^[(kx)/k]1=lim[(1+k/x)^(kx)]^1/k=e^(1/k)=e^(1/2)
解得k=1/2
lim(1+k/x)=1呀,

应该是:
极限lim(1+k/x)^x=e^(1/2),(k为常数,x无穷大),求k?
否则左边=1不可能等于右边!
lim(1+k/x)^x=lim[(1+k/x)^[(kx)/k]=lim[(1+k/x)^(kx)]^1/k=e^(1/k)=e^(1/2)
解得k=1/2