已知β1、β2是非齐次线性方程组AX=b的两个不同的解,α1、α2是对应齐次线性方程组AX=0的基础解析,k1、k2为任意常数,则方程组AX=b的通解(一般解)必是( ) A.k1α1+k2(α1+α2)+β1-β22 B.
问题描述:
已知β1、β2是非齐次线性方程组AX=b的两个不同的解,α1、α2是对应齐次线性方程组AX=0的基础解析,k1、k2为任意常数,则方程组AX=b的通解(一般解)必是( )
A. k1α1+k2(α1+α2)+
β1-β2
2
B. k1α1+k2(α1-α2)+
β1+β2
2
C. k1α1+k2(β1+β2)+
β1-β2
2
D. k1α1+k2(β1-β2)+
β1+β2
2
答
因为AX=b的通解等于AX=0的通解加上AX=b的一个特(1)对于选项A.由于β1、β2是非齐次线性方程组AX=b的两个不同的解,因此β1-β22是AX=0的解.故A错误.(2)对于选项B.由于α1、α2是对应齐次线性方程组AX=0的基...