已知m×n矩阵A的秩为n-1,α1,α2是齐次线性方程组AX=0的两个不同的解,k为任意常数,则方程组AX=0的通解为( ) A.kα1 B.kα2 C.k(α1+α2) D.k(α1-α2)
问题描述:
已知m×n矩阵A的秩为n-1,α1,α2是齐次线性方程组AX=0的两个不同的解,k为任意常数,则方程组AX=0的通解为( )
A. kα1
B. kα2
C. k(α1+α2)
D. k(α1-α2)
答
由m×n矩阵A的秩为n-1,知AX=0的基础解系只含有一个解向量因此,要构成基础解系的这个解向量,必须是非零向量.已知α1,α2是齐次线性方程组AX=0的两个不同的解∴α1-α2一定是AX=0的非零解∴AX=0的通解可表示为k(...