设正项数列﹛An﹜的前n项和为Sn,若﹛An﹜和﹛√Sn﹜都是等差数列,且公差相等,则A1=?
问题描述:
设正项数列﹛An﹜的前n项和为Sn,若﹛An﹜和﹛√Sn﹜都是等差数列,且公差相等,则A1=?
答
设公差为d,首项a1Sn=na1+n(n-1)d/2√Sn=√(S1)+(n-1)d=√(a1)+(n-1)d 平方Sn=a1+2√(a1)*(n-1)d+(n-1)^2d^2na1+n(n-1)d/2=a1+2√(a1)*(n-1)d+(n-1)^2d^2(n-1)a1+n(n-1)d/2=2√(a1)*(n-1)d+(n-1)^2d^2a1+nd/2=2√(a1)...