设圆的方程为x2+y2-4x-5=0, (1)求该圆的圆心坐标及半径; (2)若此圆的一条弦AB的中点为P(3,1),求直线AB的方程.
问题描述:
设圆的方程为x2+y2-4x-5=0,
(1)求该圆的圆心坐标及半径;
(2)若此圆的一条弦AB的中点为P(3,1),求直线AB的方程.
答
(1)将x2+y2-4x-5=0配方得:(x-2)2+y2=9
∴圆心坐标为C(2.0),半经为r=3.…(6分)
(2)设直线AB的斜率为k.
由圆的知识可知:CP⊥AB,∴kCP•k=-1
又Kcp=
=1,∴k=-1.1−0 3−2
∴直线AB的方程为y-1=-1(x-3)
即:x+y-4=0…(12分)