已知抛物线y^2=4x,椭圆x^2/9+y^2/m=1,它们有共同的焦点F2,椭圆的另一个焦点为F1,点P为抛物线与椭圆在第一象限的交点,求cos角PF1F2与cos角PF2F1的积

问题描述:

已知抛物线y^2=4x,椭圆x^2/9+y^2/m=1,它们有共同的焦点F2,椭圆的另一个焦点为F1,点P为抛物线与椭圆在第一象限的交点,求cos角PF1F2与cos角PF2F1的积

显然可得:F2(1,0)所以c=1而焦点在x轴上,所以a=3所以m=8又显然可以得到抛物线的准线为x=-1以及计算可得P坐标(3/2,根号6)所以可得PF2=P到抛物线准线的距离=d=2.5再根据椭圆第一定律,得到PF1=2a-d=3.5而F1F2=2c=2...