已知a.b.c是三角形的三边,且满足(a+b+c)(a+b+c)=3(aa+bb+cc),求证;这个三角形是等腰三角形

问题描述:

已知a.b.c是三角形的三边,且满足(a+b+c)(a+b+c)=3(aa+bb+cc),求证;这个三角形是等腰三角形

(a+b+c)^2=3(a^2+b^2+c^2)
a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2
2a^2+2b^2+2c^2-2ab-2bc-2ca=0
(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0
(a-b)^2+(b-c)^2+(c-a)^2=0
所以(a-b)^2=0,(b-c)^2=0,(c-a)^2=0
a-b=0,b-c=0,c-a=0
所以a=b=c
所以这是等边三角形,当然也是等腰三角形