证明有限个n阶可逆矩阵乘积可逆,即A,B均为n阶可逆矩阵,则AB为可逆矩阵

问题描述:

证明有限个n阶可逆矩阵乘积可逆,即A,B均为n阶可逆矩阵,则AB为可逆矩阵

AB*B^(-1)*A^(-1)=AEA^(-1)=AA^(-1)=E
(E为单位矩阵)
从而AB为可逆矩阵,逆矩阵为B^(-1)*A^(-1)