1.已知角A的定点顶点与直角坐标系的原点重合,始边在X轴的正半轴上,终边经过点P

问题描述:

1.已知角A的定点顶点与直角坐标系的原点重合,始边在X轴的正半轴上,终边经过点P
(-1,2),求cos(2A+45°)的值
2.已知k=[2sinα^2+sin2α]/(1+tanα),45°<α<90°,试用k表示sinα-cosα
3.当X,Y为锐角时,等式sin(X+Y)=sinX+sinY成立吗?说明理由.

1.由题意据任意角三角函数的定义可得:
角A的终边上点P(-1,2)到原点的距离是√5
则sinA=2/√5;cosA=1/√5
由二倍角公式可得:
sin2A=2sinAcosA=2×(2/√5)×(1/√5)=4/5
cos2A=2cos²A-1=2/5 -1=-3/5
所以cos(2A+45°)=cos2Asin45°-sin2Acos45°
=(√2)/2 ×(-3/5 +4/5)
=(√2)/10
2.k=(2sin²α+sin2α)/(1+tanα)
=(2sin²α+2sinαcosα)/[(sinα+cosα)/cosα]
=2sinαcosα
因为45°<α<90°,所以sinα>cosα>0
则sinα-cosα>0
因为(sinα-cosα)²=sin²α-2sinαcosα+cos²α=1-k
所以sinα-cosα=√(1-k)
3.因为sin(x+y)=2sin[(x+y)/2]cos[(x+y)/2]
sinx+siny=sin{[(x+y)/2]+[(x-y)/2]} +sin{[(x+y)/2]-[(x-y)/2]}
=sin[(x+y)/2]cos[(x-y)/2]+cos[(x+y)/2]sin[(x-y)/2]
+sin[(x+y)/2]cos[(x-y)/2]-cos[(x+y)/2]sin[(x-y)/2]
=2sin[(x+y)/2]cos[(x-y)/2]
且x,y∈(0°,90°)即(x+y)/2 ∈(0°,90°)
则sin[(x+y)/2]>0
所以当且仅当cos[(x+y)/2]=cos[(x-y)/2]时,sin(x+y)=sinx+siny成立
以下假设存在锐角x,y,能使cos[(x+y)/2]=cos[(x-y)/2]成立
因为(x+y)/2 ∈(0°,90°),(x-y)/2 ∈(-45°,45°)
所以要使cos[(x+y)/2]=cos[(x-y)/2]成立,须使
(x+y)/2=(x-y)/2即y=0°
或(x+y)/2=-(x-y)/2即x=0°
显然这与已知x,y为锐角相矛盾
所以假设不成立
则cos[(x+y)/2]≠cos[(x-y)/2]
所以当X,Y为锐角时,等式sin(X+Y)=sinX+sinY不成立