设R上的可导函数f(x)满足f(x+y)=f(x)+f(y)+4xy(x,y∈R),且f'(1)=2,则方程f'(x)=0的根为
问题描述:
设R上的可导函数f(x)满足f(x+y)=f(x)+f(y)+4xy(x,y∈R),且f'(1)=2,则方程f'(x)=0的根为
刚开始这里f'(x+y)=f'(x) +4y是怎么求出的?
y与x无关,不是x的函数.两边对x求导,f'(x+y)=f'(x) +4y
x=1带入,f'(1+y)=f'(1) +4y = 2+4y
令1+y=t,则y=t-1;带入上式,f'(t)= 2+4(t-1)=4t-2
f'(t)=4t-2=0
t=1/2
f(x)导数为0,根是1/2
我想的;刚开始这里这题求导是这样求吗?
f(x+y)=f(x)+f(y)+4xy
f'(x+y) (x+y)'=f'(x)+f'(y)*y'+4(xy)'
f'(x+y) (x'+y')=f'(x)+f'(y)*y'+4(x'*y+x*y')
答
对x求导,且x,y不关联,也就是对于x来讲,y是个常数,所以
f'(x+y)=f‘(x)+[f(y)]'+(4y*x)' (注意,这是针对x求导,y是常数,f(y)也是常数)
=f’(x)+0+4y