设函数f(x)在区间(0,1)上连续,并设∫(0,1) f(x)dx=1,则∫ dx∫ f(0,1)dx∫(x,1) f(x)f(y)dy=

问题描述:

设函数f(x)在区间(0,1)上连续,并设∫(0,1) f(x)dx=1,则∫ dx∫ f(0,1)dx∫(x,1) f(x)f(y)dy=

您确定原题是求∫ dx∫ f(0,1)dx∫(x,1) f(x)f(y)dy吗?是不是∫ f(0,1)dx∫(x,1) f(x)f(y)dy?如果是前者,答案是x/2+C.如果是后者,答案是1/2.∫ f(0,1)dx∫(x,1) f(x)f(y)dy=∫ f(0,1)dy∫(y,1) f(x)f(y)dx=∫ f(0,1)...