dy/dx=(y+5)(x+2) y(0)=1 求

问题描述:

dy/dx=(y+5)(x+2) y(0)=1 求

dy/dx=(y+5)(x+2)dy/(y+5)=(x+2)dx两边同时积分ln(y+5)=x^2/2+2x+C又如:y(0)=1即:x=0,y=1带入ln(y+5)=x^2/2+2x+C解得:C=ln6ln(y+5)=x^2/2+2x+ln6y+5=e^(x^2/2+2x+ln6)y=6e^(x^2/2+2x)-5