已知函数y=f(x)的定义域为R,并对一切实数x,都满足f(2+x)=f(2-x). ①证明:函数y=f(x)的图像关于直线x=2对称; ②若f(x)是偶函数,且x属于[0,2]时,f(x)=2x-1,求x属于[-4,0]时的f(x)的表达

问题描述:

已知函数y=f(x)的定义域为R,并对一切实数x,都满足f(2+x)=f(2-x). ①证明:函数y=f(x)的图像关于直线x=2对称; ②若f(x)是偶函数,且x属于[0,2]时,f(x)=2x-1,求x属于[-4,0]时的f(x)的表达式.

.要y=f(x)图像关于x=2对称,则要对于每个y=f(x)上的点P(x1,y1),都有它关于x=2对称点P'(x1',y1')在图像上 x1'=4-x1 y1'=y1 由于f(2+x)=f(2-x) ∴对于任意实数x,有f(x)=f(4-x) ∴y1'=y1=f(x1)=...