A是△BCD平面外的一点,E、F分别是BC、AD的中点, (1)求证:直线EF与BD是异面直线; (2)若AC⊥BD,AC=BD,求EF与BD所成的角.

问题描述:

A是△BCD平面外的一点,E、F分别是BC、AD的中点,

(1)求证:直线EF与BD是异面直线;
(2)若AC⊥BD,AC=BD,求EF与BD所成的角.

(1)证明:用反证法.设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A、B、C、D在同一平面内,这与A是△BCD平面外的一点相矛盾.故直线EF与BD是异面直线.(2)取CD的中点G,连接EG、FG...